Extremal and Probabilistic Graph Theory March 15

- Mantel's Theorem. Triangle-free graph with maximum number of edges is unique, which is $K_{\lfloor \frac{n}{2} \rfloor \lfloor \frac{n}{2} \rfloor}$
- **Proof.** By induction on n.

Base case is trivial: when n = 1, 2, 3

Let G be a n – vertex K_3 – free graph with at least $\lfloor \frac{n^2}{4} \rfloor$ edges, we show that G must be $K_{\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil}$

Since adding a new edge to $K_{\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil}$ will result in a K_3 , by possibly deleting edges, we may assume G has exactly $\lfloor \frac{n^2}{4} \rfloor$ edges.

Since $e(G) = \lfloor \frac{n^2}{4} \rfloor$, $\delta(G) \leq \lfloor \frac{n}{2} \rfloor$, so there exist a vertex v with $d(v) \leq \lfloor \frac{n}{2} \rfloor$, let $G' = G - \{v\}$ So G' is on (n-1)-vertex K_3 -free graph with $e(G') = e(G) - \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n^2}{4} \rfloor - \lfloor \frac{n}{2} \rfloor = \lfloor \frac{(n-1)^2}{4} \rfloor$

By induction $G'=K_{\left\lfloor \frac{n-1}{2} \right\rfloor \left\lceil \frac{n-1}{2} \right\rceil}$ and $d(v)=\left\lfloor \frac{n}{2} \right\rfloor$

Since G is $K_3 - free$, $N_G(v) \subset X$ or $N_G(v) \subset Y$

when n = 2k, $N_G(v) = Y$

when n = 2k - 1, $N_G(v) = Y(or X)$

Then $\{X \cup \{v\}, Y\}$ gives a complete graph $K_{\lfloor \frac{n}{2} \rfloor \lfloor \frac{n}{2} \rfloor}$.

- Remak. (1).ex(n, K₃) = \[\frac{n^2}{4} \]
 (2).π(K₃) = \frac{1}{2}
- **Def.** Turán graph $T_r(n)$: a balanced complete r partite n vertex graph:
- $V(G) = V_1 \stackrel{.}{\cup} V_2 \stackrel{.}{\cup} \dots \stackrel{.}{\cup} V_r$
- $|V_1| \le |V_2| \le \dots \le |V_r| \le |V_1| + 1$
- all possible edges between $V_i \& V_j, i \neq j$
- Observation. (1). $e(T_r(n)) = \sum_{0 \le i < j < r} \lfloor \frac{n+i}{r} \rfloor \lfloor \frac{n+j}{r} \rfloor = \max\{e(G) : G \text{ is n-vertex r-partite }\}$

(2). $T_r(n-1)$ can be obtained from $T_r(n)$ by deleting a vertex with min-degree in $T_r(n)$. i.e. a vertex with degree $n - \lceil \frac{n}{r} \rceil$.

(3). $T_r(n)$ is the n-vertex graph with highest min-degree among all graphs with the same number of edges $e(T_r(n))$.

• **Def.** A graph G is r - partite if V(G) can be partitioned into $V_1, V_2, ..., V_r$, s.t. each V_i is an independent set.

 $\Leftrightarrow \ \chi(G) \leq r$

- Turán Theorem. Let G be on n-vertex $K_{r+1} free$ graph. Then $e(G) \le e(T_r(n))$ with equality if and only if $G = T_r(n)$.
- Remark. (1).ex(n, K_{r+1}) = e(T_r(n))
 (2). π(K_{r+1}) = 1 ¹/_r
- **Proofs.**There are 3 proofs in the following class notes: http://staff.ustc.edu.cn/ jiema/Comb2015/week
- **proof.** By induction on *n*.

Let G be on $n - vertex K_{r+1} - free$ graph with at least $e(T_r(n))$ edges. we want to show $G = T_r(n)$, we may assume $e(G) = e(T_r(n))$ By Observation (3), \exists a vertex v in G with $d_G(v) \leq \delta(T_r(n))$, let $G' = G - \{v\}$ be $(n - 1) - vertex K_{r+1} - free$ with $e(G') = e(T_r(n)) - \delta(T_r(n)) \stackrel{by obs}{=} {}^{(2)} e(T_r(n - 1))$, by induction, $e(G') = e(T_r(n))\& G' = T_r(n - 1)$ let $V(G') = V_1 \dot{\cup} V_2 \dot{\cup} \dots \dot{\cup} V_r$, then \exists some $V_i(\text{say } V_1)$, $(V_1 \cup \{v\}, V_2, \dots, V_r)$ is r - partitionof G with $e(G) = e(T_r(n))$. By Obs (1) and its unique maximality, $G = T_r(n)$.

- **Def.** The chromatic number $\chi(G) = \min k$ s.t. G can be partitioned into $V_1, V_2, ..., V_k$, where V_i is independent.
- Note that: $\chi(G) \leq k \Leftrightarrow G$ is k partite.
- Key Observation: For large m, T_r(m) contains every F with χ(F) ≤ r, but contains NO graph F with χ(F) ≥ r + 1.
 We also note that T_r(n) is a m/r − blowup of K_r.
- Blowup Theorem. (Recall)...
- Theorem 1. $\pi(T_r(m)) = \pi(K_r) = 1 \frac{1}{r-1}, \text{ for } \forall m$
- Theorem 2 (Erdős-Stone). For \forall graph F with $\chi(F) \geq 2$, $\pi(F) = 1 \frac{1}{\chi(F) 1} = \pi(K_{\chi(F)})$
- **proof**. Let $\chi(F) = r$, then \exists large m s.t. $F \subset T_r(m)$. $ex(n,F) \leq ex(n,T_r(n)) \Rightarrow \pi(n,F) \leq \pi(n,T_r(n)) \stackrel{Thm1}{=} 1 - \frac{1}{r-1}$ since $\chi(F) = r$, $F \not\subset T_{r-1}(n) \Rightarrow ex(n,F) \geq 1 - \frac{1}{r-1}$, overall $\pi(F) = 1 - \frac{1}{r-1}$.

Def. Let *F* be a family of graphs.
 Let χ(*F*) = min_{F∈F}χ(*F*).

• Theorem 3 (Erdős-Stone; Observed by Simonovits).

For any family \mathcal{F} with $\chi(\mathcal{F}) = r \ge 2$, we have $\pi(\mathcal{F}) = 1 - \frac{1}{r-1}$.

- proof. Exercise.
- **Remak.** For any family of graphs $\pi(\mathcal{F}) \in \{0, \frac{1}{2}, \frac{2}{3}, ..., \frac{n-1}{n}, ...\}.$
- Conjecture (Erdős-Simonovits). For any rational $r \in [1,2)$, there exists a bipartite graph F s.t. $ex(n, F) = \Theta(n^r)$.
- **Remak.** Recently it is proved that there exists a family \mathcal{F} such that $ex(n, \mathcal{F}) = \Theta(n^r)$ by Bukh-Conlon. More details can be found in their paper: http://arxiv.org/pdf/1506.06406.pdf